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Logarithmic Convexity for Discrete 
Harmonic Functions and the Approximation 

of the Cauchy Problem for Poisson's Equation 
By R. S. Falk* and P. B. Monk** 

Abstract. Logarithmic convexity type continuous dependence results for discrete harmonic 
functions defined as solutions of the standard Co piecewise-linear approximation to Laplace's 
equation are proved. Using this result, error estimates for a regularization method for 
approximating the Cauchy problem for Poisson's equation on a rectangle are obtained. 
Numerical results are presented. 

1. Introduction. This paper will examine numerical methods for approximating the 
following Cauchy problem for Poisson's equation. Let Q = [0,1] X [0,1], let F 
denote the boundary of Q, let I denote the open segment of F lying on the x-axis, 
and let I' denote the open segment of F along y = 1. Then, given functions f, gj, 
and g2, and positive parameters M, e1, and 2, we seek a function u that satisfies: 

-Au =f in Q, u =0 whenx = 0,orx = 1, 

(1) Iu - g1 I1, < i I un -g210,7 < -2 u10, < M. 

Here I Im * denotes the mth Sobolev norin on the line segment *. The L2 bound 
on L:' stabilizes what would otherwise be an ill-posed problem. Such stability 
questions for elliptic Cauchy problems have been discussed extensively by Payne (cf. 
[8], [9], and [10]). However, these results have only been derived for continuous 
problems, such as Problem (1). If we wish to analyze discrete methods for approxi- 
mating Problem (1), or more general elliptic Cauchy problems, these continuous 
stability results are not sufficient. This is because, although it is possible to derive 
error estimates using the continuous theory, such estimates tend to be pessimistic. 
Furthermore, constraints on the method to ensure stability will be excessive. 

Previous work on the numerical approximation of the Cauchy problem for 
Poisson's equation includes the work of Douglas [4], Cannon [1], Cannon and Miller 
[2], and Cannon and Douglas [3]. In these papers, stability and error estimates are 
derived for special numerical schemes. Franzone and Magenes [5] have presented 
detailed numerical and experimental work on an application of the Cauchy problem 
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in electrocardiology. In their paper, the Cauchy problem was approximated using 
finite elements and was solved by a least squares penalty technique similar to the 
one analyzed in the present paper. A different approach was considered by Houde 
Han [7], who posed the Cauchy problem as a variational inequality and proved 
convergence (but not order estimates) for a finite element discretization of the 
problem. 

The first concern of this paper is to prove that particular discrete harmonic 
functions satisfy logarithmic convexity type results. As a consequence, we will be 
able to prove stability in a discrete version of Problem (1). Our proofs are guided by 
the ideas of Payne [10]. Having derived these stability results, we will then prove 
error estimates for a discrete least squares method for approximating Problem (1). 
We recognize that our least squares method is possibly not the ideal method for 
solving Problem (1). However, unlike more specialized methods, the numerical 
method proposed here generalizes to more complex elliptic operators, and more 
complex domains. By concentrating on this model problem, we are able to give an 
analysis which avoids many technical problems and highlights the type of results to 
be expected of the method. 

The layout of this paper is as follows. In the remainder of the introduction we will 
define some notation to be used throughout the paper. In Section 2, we will define a 
particular finite element space on f2, and then prove that certain discrete harmonic 
functions satisfy logarithmic convexity type results. Although we will only provide 
detailed proofs of our theorems for solutions of Laplace's equation, we will indicate 
how the proofs can be generalized to prove logarithmic convexity of solutions of the 
more general problem 

-v .(a(x)vu) = 0 in Q. 
This would allow us to analyze a more general problem than Problem (1) in which 
an x-dependent diffusivity is included. For the sake of clarity, we do not pursue that 
here. 

In Section 3, we summarize the approximation properties of a standard finite 
element method for approximating Poisson's equation. Then, in Section 4, we show 
how the results of Section 2 may be used to obtain error estimates for a particular 
least squares penalty method for approximating Problem (1). Finally, in Section 5, 
we present some results of numerical experiments with the algorithm of Section 4. 

Directions for further work include the analysis of the Cauchy problem with a 
diffusivity depending on both x and y, the use of higher-order elements, and the 
generalization to more complex geometries. 

Throughout this paper, we shall use the following notation. For N a positive 
integer, let h = 1/N, and define 

Y., = {(X, nh) 10 < x <l} 
Clearly, Y0 = I and zN = 7'. We denote by jj lima I in and I Im > the norms on 
H`'(Q), Ht(F), and H'(Y.), respectively. 

For m = 1 or 2 and p > 2, we shall denote the norms in the Sobolev spaces 
Wm'P(Q) and Wml/P.P(P) by 11 -,mp and I I Im-1/pp,' respectively. We shall also 
consider traces in the Sobolev spaces Wm-l/PP(In) (for n = 0 and N) and denote 
the norms in these spaces by I m- Jm-1P p y . Definitions of these spaces and their 
relationships can be found in Grisvard [6]. 
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We also denote by HI(Q), the set of functions in H'(Q) vanishing on F and by 

Ho(7.j) the set of functions in Hl(ln) vanishing at x = 0 and x = 1. 
Finally, we shall use the notation ( *, * ) for the L2-inner product on Q and K )A 

for the LV-inner product on A when A is either F, a, or 2'. 

2. Logarithmic Convexity and Stability. First, we shall define the finite element 
spaces to be used in this paper. Let Th be the uniform triangulation of Q, consisting 
of right isosceles triangles with two sides of length h = 1/N (where N is a positive 
integer), oriented as in Figure 1. 

Let Sh C H'(Q) denote the finite element space of all continuous piecewise-linear 
functions on Trh, and let Sh - {vh E S I Vh = 0 on F). In this section, we are going 
to study the behavior of discrete harmonic functions. By discrete harmonic, we mean 
any function wh E Sh which satisfies the following equations 

(2) (Vwh, V h) = O for every Oh E Sh 

Notice that, because of the particular choice of Th and Sh, a discrete harmonic 
function wh also satisfies the five-point difference operator at interior mesh points. 
Hence, if we let W,' = Wh(X = ih, y = jh), and if W' is the column vector with 
entries Wij, 1 < i < N - 1, then 

(3) Wn+- 2Wn + Wn-1 = LWn. 

Here L is the (N - 1) x (N - 1) symmetric, tridiagonal matrix with 2 down the 
main diagonal, and -1 down the off diagonals. 

(0,1:) N _(1) 

En+1 

En 

En-1 

h 

(0, 0) h - Z (1, 0) 

FIGURE 1 
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We shall be interested in estimating norms of wh on strips of constant y. On these 
strips we will use both standard Sobolev norms and the following mesh-dependent 
norm. If wh E S2, we define 

IWhO h h (h(W n) TW n) 

It is well known that for Co piecewise-linear finite element functions, the above 
mesh-dependent norm is equivalent to the standard Sobolev norm. Let 

(4) E(O) = [(Wl)TLWO -(Wl _ WO)T(Wl - Wo)]/h. 

We can now state the main result of this paper. 

THEOREM (1). Let Wh satisfy Eq. (2) together with the boundary conditions that 
Wh = 0 at x = 0 and x = 1, and let E(O) be given by (4). Then the following hold for 
0 < n < N. 

1. IfE(O) > 0, 

I wl I ( Iw ,,h ) (1-n/N)( wh IO, ', )(nN). 

2. If E(O) < 0, 

2 
(I - 2h2)(n(n-N)/2)(IwhI2 + I E() I)( / 

I WhIO, 1, h < 
(1Wh- + E(O) 

*(I wh 1oh + E(O) )(nN) 

Remark. Results similar to those in Theorem (1) hold in more general cases. For 
instance, let us consider an extension of Problem (2) involving a diffusion coefficient 
depending on x, so that the differential equation becomes 

(5) - V * (a(x)Vw) = 0 in Q. 

If the standard Co finite element discretization defined in this section is applied to 
this equation, the following equation analogous to Eq. (2) holds for generalized 
discrete harmonic functions wh E Sh, 

(aVWh ,V h) = 0 for every Oh E h 9 

This equation implies that the nodal values for wh satisfy the difference equation 

(6) A(Wn+1 - 2Wn + Wan-1) = LaWn. 

Here La is an (N - 1) X (N - 1) symmetric tridiagonal matrix depending on a(x), 
and A is an (N - 1) X (N - 1) diagonal matrix with ith diagonal entry ai defined 
as follows: 

ai a(x) dA, 

where Ri is the region shown in Figure 2. 
For Eq. (5), the quantity corresponding to E(O) is 

Ea(0) = [(Wl)TLaWO -(W1 - WO)TA(W1 - Wo)]/h. 
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FIGURE 2 

Using this definition, it is possible to prove an analogue of Theorem (1) for Eq. (5). 
In this case, E(O) is replaced by Ea(O), IWh1o 0,h by hl/2((Wn)TAWn)l/2, IWhlo h 

by h1/2((WO)TAWO)1/2, and IWh I O,'h by hl/2((WN)TAWN)1/2. Obviously, such 
discrete L2-norms are equivalent to the standard Sobolev norms provided the 
differential operator is uniformly elliptic. 

It is also possible to prove theorems similar to Theorem (1) for different boundary 
conditions at x = 0 and x = 1. For instance, we can deal with homogeneous 
Neumann data on x = 0 and x = 1. 

Before we prove Theorem (1), we shall define a useful discrete functional and 
derive some of its properties. Let 

(7) Gn = h(Wn)TWn + Q, 

where Q is a nonnegative constant. Gn plays the same role in the discrete theory as 
the functional G(t) of Payne [10, p. 20] plays in the continuous theory. Our first 
lemma offers an alternative characterization of E(O). 

LEMMA (1). Let E(O) be given by (4). Then 

(wn+l)TWn-1 (Wn)TWn = hE(0) forl < n < N - 1. 

Proof of Lemma (1). We use (3) to replace terms on the left-hand side of the above 
equality to prove the following: 

(Wn+l)TWn-1 _(Wn)TWn 

= [(L + 2I)Wn] TWn1 _ (Wn-1)TWn-1 _(Wn)TWn 

- (Wn)T(Wn - 2Wn-1 + Wn-2) + 2(Wn)TW?11- 

_ (Wn-1)TWn-1 _(Wn)TWn 

= (Wn)TWn-2 _(Wn-l)T wn-1. 

Iterating this equality proves that 

(wn+l)Twn-1 -(Wn)TWn = (W2)TWO -(Wl)TW1. 
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It remains to show that the expression on the right-hand side above is hE(O). Again 
we use (3) to obtain 

(W2)TWO -(Wl)TW1 

= [(L + 2I)Wl] TWO _(WO)TWO _(W1)TW1 = hE(O). 

This completes the proof of the lemma. 
Our next lemma shows that GQ satisfies a discrete form of the standard second- 

order differential inequality of logarithmic convexity. 

LEMMA (2). Let Gn be defined by (7). Then 

Gn + l G l-Gn2 > 2h2E (O) Gn for 1 < n < N-1 . 

Remark. If Eq. (1) is replaced by Eq. (5) (cf. the remark following Theorem (1)), 
we should redefine Gn as Gn = h (W n)TAWn + Q. With this redefinition, Lemma (2) 
holds with E(O) replaced by Ea(O). 

Proof of Lemma (2). We simply expand Gn+, G1 -1, and Gn and use Lemma (1), 

G,??lGnl A -Gn2 = h2((Wn+l)TWn+l)((Wn-l) TWn-1) - h2((Wn)TWn)2 

+hQ[(Wn+l)TWn+l +(wn-1)TWn-1 - 2(wn)Twn] 

- h2((Wn+l)TWn+1)((Wn-l)TWn-1) - h2((Wn1)TWn1 )2 

+ E (0)2 + 2h2E(O)[h(Wn)TWn + Q] 

+hQ[(Wn?)Twn+l +(Wn-l)TWn-1 - 2(Wn+l)TWn-1]. 

The application of Schwarz's inequality and the arithmetic-geometric mean inequal- 
ity finishes the proof. 

Now we are ready to prove Theorem (1). Essentially, Lemma (2) proves that Gn is 
logarithmically convex. Then, we relate Gn to I Wh I O 1 h. 

Proof of Theorem (1). (1) Suppose E(O) >? 0. Then Lemma (2) implies that 
G 2 < G -1G,1+1. Using an induction argument on N, we now show that, for 
0 < n < N, 

(8) Gn < Go -/l)G~N/ 

The result is obvious for N = 2. Now suppose that (8) holds for N = m - 1. First 
we prove (8) for N = m, and n = m - 1. By Lemma (2), Gm-, < G/2)Gm?G/2), and 
so estimating Gm -2 by estimate (8) with N = m - 1 and n = m - 2, we obtain 

Gm-1 < (G1/(m-l)Gm(m- 2)/(m-1)) (112)G(112) 

Simplifying this expression proves the following: 

(9) Gt-1 < G(11m)Gm( -(l/m)). 

Now we can use this result to prove (8) for N = m, and 0 < n < m - 1. Again by 
induction, 

Gn 
n G1-n(m - 1)) (n/m1) 

Finally, we use (9) to estimate Gm-1 in the above expression. This completes the 
proof of (8) for N = m, and hence, by induction for all N. 
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If we now take Q= 0, and note that (Wn)TWn = I12I, we have the first 
result of the theorem. 

(2) Suppose E(O) < 0. Then, if we let Q = IE(0)1, Lemma (2) tells us that 

Gil + G _ l-Gn2 > [2 h2E(o)/Q]Gn2 = -2h 2G 2 (since G. > Q). 

Hence, if F,1 = (1 - 2h2)-(n2/2)G,1, it is easy to show that F. satisfies F.+1Fn- - Fn2 
> 0, and so F,, satisfies an estimate like (8). Rewriting F. in terms of Wh and E(O) 
proves the second estimate of the theorem. 

Our final lemma of this section estimates E(O) in terms of norms of Wh. As one 
would expect from the continuous theory, this involves norms of Wh and awh/an 

on E. 

LEMMA (3). If Wh E Sh, then 

IE (0) I < (3/2)wh)1+ 3 1wh )x I 0. 

Proof of Lemma (3). We estimate the two terms of Eq. (4) directly. Let us label the 
triangles with edges on 2 by T1, T2,..., TN (starting at x = 0), as shown in Figure 3. 

Then 
N-I 

(10) (w'-1 WO)T(W1 _ W) W ? (Wi _ W1o)2 = h|wh)n|Ox. 
i= 1 

To estimate the remaining term, we expand it and use the Schwarz inequality and 
the arithmetic-geometric mean inequality: 

(Wl)TLWO = (W1 _ WO)TLWO +(WO)TLWO 

(11) < (1/2)(W' - WO)T(Wl - W0) + (1/2)(WO)T LLWO + (W ) TLW 

< (1/2)h|(Wh)fnlo I + 3h1(Wh) x lo 

(since, if p(.) represents the spectral radius of a matrix, p(L) < 4). Combining (10) 
and (11) in (4) proves the lemma. 

3. The Dirichiet Problem for Poisson's Equation. Suppose that for some 2 4 p < x, 
fe LP(Q), z EI W 2-l/P(2) f Ho(2), and z2 E W2->/P(Y') n Ho(2:'). Let z E 
W22(Q) be the solution of the Dirichlet Problem: 

-Az=f in , 

(12) z = 0 if x = Oorx = 1, 

z = z1 on E, 
z = Z2 on E'. 
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With Sh and Sh? defined as in the previous section, let Zh E Sh be defined as the 
solution of 

(VzVh,V'7h) (f, Ih) for every Oh E Sh? 

(13) ZhO= if x =Oorx = 1, 
(13) Zh interpolates z1 on E, 

Zh interpolates Z2 on E'. 

Some approximation properties of Zh are summarized in the following theorem. 

THEOREM (2). There exists a constant C independent of h, n, and z, such that 
(1) lIZ - ZhIll < ChIIz112. 

(2) lZ - Zh1lo < Ch2-1lPlIZll2,. 

(3) IZ - ZhlOX < Ch 3/2/(2p)] lzI12,p. 
(4) |(Z - Zh)nlOX -< Ch'11/P'IjZjj2,P. 

Proof of Theorem (2). Property (1) can be found in [12]. Property (2) is proved 
using a minor modification of the usual duality argument. Let w GE H01(0) satisfy 
- AW = Z - Zh in 2, and let wI E Sho interpolate w. Then 

||Z - ZhIO = (V(W - WI), V(Z - Zh)) - (Z - Zh,Wn) r 

< V(1w - WI) llolV (Z Zh) 110 + Z - Zh lol Wn lo 

< Chi2 W 11211Z 112 + Ch[21/P] [2 Z1 12-1/pp,. + I Z2 12 -1/ ppX'] 11 W 112 

< ChE2-"'P'I1zII2pliz - Zhl o. 

To prove property (3), we first observe that for w E H1(Q2) with w = 0 for x = 0 
and x = 1, 

(14) 1 w 12z C11 w illo W 1119 

where C is a constant independent of w and n. This is easily proved by considering 
f h a (w2y) dydx for nh > 1/2, 

and a similar integral for nh < 1/2. Estimate (3) follows from inequality (14) and 
parts (1) and (2) of Theorem (2). 

To prove property (4) we let z, e Sh interpolate z. Then, using the inverse 
properties of Sh, we get 

(z - 
Zh)n 10,: < I(z 

- 
ZI) nI0 + I(z1 

- 
Zh)n 10, 

< I(Z - Z1)n l0, + Ch1|IIz!-ZhIIl,p. 

Now define w by w = zI on F and (vw,v4)= (f,4) for all k e Ho. Then, 
W - ZE e H01(Q) f Wp1(2), Zh - zI e Sh, and 

(v(Zh - zI), V7h) = (V(w - z,), V7h) for all (Ph E Sh. 

Hence, by a result of Rannacher and Scott [11], 

IIZh - Zj1 p,p < C|i|W Z 1I 1p - C[IIZ - ZI1 + j|W - ZI1],p 

< C [l1z - Z. 11 ,P + I w - z I1 ,, +1 w - Z 
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(since w - z is harmonic). Thus, 

(z - Zh)n o0 AI(Z - zI) n 0 + Ch 1P[Ipz - Zz 1 1p + zl (Z1 II - /P P,7 

+2 | z(Z2) I 11 - l/p'p,'2 

Ch 1l- l1pll Z 112p 

4. Error Estimates for a Numerical Method. Before we define the method to be 
analyzed, we will need to define one more finite element space. Let Mh(l) C Ho(z) 
be the space of continuous piecewise-linear functions on the uniform mesh of length 
h on Y, which vanish at the end points of E. In other words, let Mh(2) = { Vl I h 
e Sh and Vh = 0 if x = 0 or 1). The approximation and inverse properties of Mh(2) 
are well known. 

We can now define our approximate problem. Find (Xh, tUh) E Mh(2) X Mh(2') 
such that 

(15) JJXhIth) min Jj(ah, Ph), 
(gh Ph) Mh(2)X Mh(2') 

where J,(ah, Ph) = 1g1 -hi + 1g2 - (Uh(ah Ph))n1I , + _ |PhIg S and uh(ah_ Ph) 

solves Problem (13) with z1 = a h and Z2 = Ph. The fixed positive parameter w (the 
regularization or penalty parameter) will be discussed in more detail later. 

To understand the relationship between Problem (15) above, and Problem (1), 
note that uh( h, Ph) is an approximate solution of Poisson's equation with boundary 
data Ah on Y, and Ph on Y'. We then seek the oh and Ph which give the best fit to 
the data while penalizing the growth of the approximate solution on Y'. 

Before proceeding to state and prove error estimates for this method, we will need 
to make some existence and regularity assumptions. We assume the following: 

(Rl) There exists a solution u* E W 2( ) to Problem (1) for some p > 2. 
As a consequence of this, we get that if, g* = u*I7 and ,u* = u*I1,, then 

GE Ho(2) n Wpl -/P(y) and u* E Ho(2') n Wl - 1/P(2') 
We shall let g* = (u*)nIz,. 

THEOREM (3). Let u* satisfy hypothesis (Rl), and let Uh(Xh Lh) be constructed via 
the algorithm of this section (Problem (15)). Then there exist constants C > 1 and 
C > 1 such that for all w < 1, 

|U* - Uh(Ah, XUJh )10oss 

C * h[3/2 -1/(2p)] 

+ C(l - 2h2)(n(n-N)/4)(El + ?2 + C*h[11- 1P + w(M + C*h[2-1/P]))(l-1/N) 

.(M + El + ?2 + C*h[l-1/P] + w-1(El + ?2 + C*h[l-1/P]) 

+W(M + C*h[2-/p]))(n/N) 

where C is independent of h, e1, ?2, M, and u*, and C* depends on IIU*112,p, but is 
also independent of h, E1, ?2, and M. 
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Remark. Using the inequality ex >? 1 + x, first with x = -2h2, and then with 
x = 2h2/(1 - 2h2), we can show that 

e(nh(l-nh)/2) < (1 - 2h2)(n(nN-)/4) S< e(nh(l-nh)/((1-2h2)2)) 

COROLLARY. Let X = (,- + 62 + Ch1 11"p])/(M + Ch[2-1/p) where Cis a con- 
stant, and let the hypotheses of Theorem (3) hold. Then, -if yn = nh, we have for h 
sufficiently small that 

1*- Uh(Xh, Ah) 10o, 

C *h [3/2-1/(2p)] + Ce(.Y'(1-Y")/2)(E1 + E2 + C*h[11/PI)) 

.(M + El + ?2 + C*h(-1/P])Y, 

where C and C * have the same dependence as in Theorem (3). 

Remarks. (1) This theorem, and its corollary, suggest that h = O[(El + E2) P/(1)] 
is the best balance between measurement and discretization error for this problem. 

(2) In other instances of the Cauchy problem we may be able to do much better 
than this result suggests. For instance, suppose we know un exactly on 2 (i.e., 
?2 = 0). Then a better discrete method is to approximate a mixed boundary value 
problem, specifying the exact Neumann data on 1, and adjusting a Dirichlet data 
function on I' to fit the Dirichlet data on 1. A least squares penalty method like 
the one in the present section can be used to compute the solution. In this case, we 
find that we can use Theorem (1), part (1), in our estimates, which now look like the 
results of Theorem (3) and its corollary with all terms of the form C*h 1- /P] 
replaced by C *h [2-1/P], and the term (1 - 2h2)(n(n- N)/4) left out. 

Before we prove Theorem (3), we must estimate Jw(Xh, Puh). 

LEMMA (4). Assuming hypothesis (Ri) holds, 

Jw(XhgAh) (E? + C*h[1-1/P])2 +(?2 + C*h[1-1/P])2 + W 2(M+ C*h+2-1/P]), 

where the constant C * has the same dependence as in Theorem (3). 

Proof of Lemma (4). Let (g*), E Mh(Y) be the interpolant of g* and let 
(u*)I E Mh(Y') be the interpolant of u*. Then, 

JJAh, Ath) 
-< Jw((9 ) I/ (* )1)2 

()gl (g*),12: 
?g2 

2(u2((g1)J (L)*))12 
? 

12 

Notice that Uh((gl*)I, (,U*)I) = uh(g9,u *). Next, we estimate each term in (16). By 
adding and subtracting g*, we find that 

jgi -(gl*) 1,7 Ijg1 - 
g1*I1' 

+ Ig* -(g) i,. 

< E1 + Ch [1-ll/P]J gI* 12 - l/ ?,pi, El + Ch 11-l/p]U*112p' 

In the same way, 

I(/A*)!Io j. IoX +jj* ) 

M + Ch[21/p 1/g 12_-1 1pp, M+ Ch, T. MIjuUj 112.P 
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Finally, by Theorem (2), part (4), 

g2 U U * 
, 10- + (u* - u I(g ,'*)) l 

< E2 + Ch[11/P] 1u* 112p ' 

Putting the above estimates in (16) yields the desired estimate. 
Now we can prove the error estimate of Theorem (3). 
Proof of Theorem (3). By the triangle inequality, 

(17) | A* Uh (Ih 9 Ah) 10o z <-I U* Uh(91* A*y) OE 

+ I Uh ( gl , A*) -h (XhI A*h) o0,s. 

We can easily estimate the first term on the right-hand side of (17) by Theorem (2), 
part (3). To estimate the second term, we use Theorem (1). Since we cannot be sure 
of the sign of E(O), we must use the more pessimistic estimate in Theorem (1), part 
(2). By Lemma (3), and the equivalence of norms, it suffices to perform the following 
estimates. 

(a) luh(gl*, ,*) - uh(Xh, Ah)11,7- We use the fact that Uh interpolates its boundary 
data, 

|Uh (91* H*) Uh(Xh ,9h)Il = 1 (g1c) - Xh9 
1, 

< I (9 ), - 9l 11,7- + Ig 91* |11,7- + I 91 A h 11,7- 

< Ch[11/P] | U* 2|p + El + ( J1( Ah91h ))1 

(b) luh(gl*, y*) - Uh(Xhg, th)10o,' In the same way as in part (a) of this proof, we 
estimate 

|Uh1*9 A*) 
- 

Uh(Xh9,h) Io., 

= I(A*) I- Ph 1O,' < I(A*) - 
* 
1.0* + IA 1O,' + I Po hI,' 

K Ch[2-1/p]|u*12p + M + X l(J(Xh9Ah))(1/2 

(c) l(uh(g,* A*) - uh(Xh, Ph))nIO,7* Here we must use Theorem (2), part (4), 

|(Uh(g ,9*) - Uh(/XhIh)) nl 

<|[Uh(gjp Ad) 
- 

U(g9p Ad)] n, +l - 

g210,2 + g2 -[Uh(Xh9Ah)In O1, 

< Ch[1-1/P] || U*|2| + ?2 +(Jo(XhX h)) 

Combining estimates (a), (b) and (c) with Theorem (1), part (2), using the 
equivalence of the discrete and standard Sobolev norms in (17), and then estimating 
(J<,( Xh, 1h ))1/2 by Lemma (4) completes the proof. 

5. Numerical Results. Once bases are chosen for Mh(l) and Mh(2'), the discrete 
problem of Section 3 (Problem (15)) reduces to the minimization of a quadratic 
form. Taking first variations, we obtain a system of linear equations. More precisely, 
let G" and Gh be the operators defined as follows: G~z1 E Sh solves Problem (13) 
with z2 =O? and f = 0, andGhZ2 E Sh solves Problem (13) with z1 = 0 and f = 0. 
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Then, by taking first variations, we see that Problem (15) is equivalent to finding 
(Xah apt) E M*(z) X Mh(>') which satisfy the following problem: 

( -1 Ash,Ph)x + ((gl - Xh)X, (h)x) 

+(g2 -(Uh(Xh1,h))n, (Gl<h)n)Y- = 0, 

(g2 -(Uh(XhMh)) n (Ghl4h)n)I - (A)2Lh,4ih)0 = 0 

for every (4h, 4h) E Mh(2) X Mh(E')- 

Clearly, Problem (18) is just a linear system. The dimensions of Mh(z) and Mh(E') 
are both N - 1. Let us suppose that we number the nodes on E followed by the 
nodes on E'. Then Problem (18) induces the matrix problem 

(19) (D + W2I')x =b 

where 

with [Xh] and 41th] being vectors of the nodal values of Xh and tth, respectively. 
Furthermore, D and I' have the structure 

D = ( 
I 

=(S A' 

where IN-1 is the (N - 1) X (N - 1) identity matrix and A and B are both 
symmetric (N - 1) X (N 1) matrices. The ill-conditioning of this system comes 
from the near singularity of B. 

The matrix D is dense and costly to compute, so one might wish to solve Problem 
(19) iteratively. To compute the action of D + w21' efficiently, or to compute D 
itself, we must be able to compute the adjoints of the operators aG*/an and 
aGh/afn. The following lemma allows us to do that. 

LEMMA (5). Let Ph(E) consist of all piecewise-constant functions on the uniform 
mesh of size h on E. Let Vh E Ph(E) and let Zh E Sh be discrete harmonic and take on 
the boundary values Zh = 0 on F \ E and Zh(X = nh, y = 0) = limx, nh - Vh(X) for 
n =1, . . ., N-1. Then the following hold: 

(a) Kvh, (GI fl> = EN-j(Z0 - Z1)4h(ih) for every Oh e Mh(y), w 
Zh(X = ih, y = jh). 

(b) Kvh, (Ghkh),n)2 = ,2%1(ZfT - ZIN l))h(ih) for every 'h E Mh(2')- 

Proof of Lemma (5). We will only prove the first equality. The second follows in 
the same way. Let WJ = G4 7(x = ih, y = jh). Then 

N-1 

<Vh, (GIOA),,l Zj?(Wi _ Wl)' 
i=i 

Now by applying summation by parts to 
N-1 N-1 

N (Z+1 
- Z -)(WJ+ 

- WJ) and E(Z,+1 -Z WJ+ 1 - W/) 
J(1 1=0 
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and by using the known zero boundary data for Zh and Gh, we may show that 
N-1 

- E (whi W- )Zi? 
wi4 i 

N-1 

-Ad{ W+1 2 Wi + Wi-1 Z/ + (WJ+ 1 - 2 Wii + WiJ 1) Z/ 

N-1 

= - E (Zl-Zi)Wi 
i=1 

N-1 

-Ad2I~I {(zJ+1 - 2Z/ + Z/1)W7 +(ZJ+ 1 - 2Z/ + ZL 1)Wi} 

Using the fact that Zh and GI(4h are discrete harmonic completes the proof. 
After applying Lemma (5), one step of the conjugate-gradient method can be 

computed by solving only two Dirichlet problems. Despite the possible advantages 
of using iterative methods, we have elected to solve Problem (19) by constructing D 
directly, for two reasons. First, we wished to solve Problem (19) for many W and b 
on the same grid, and second, we did not want the stabilizing effects of iterative 
methods obscuring the effects of discretization error. 

The continuous dependence result established in Theorem (3) is quite pessimistic, 
as are all logarithmic convexity type estimates. We view Theorem (3) as a theoretical 
justification of the fact that solving the underlying partial differential equation 
numerically does not significantly affect the continuous dependence of the solution 
on the Cauchy data. In numerical experiments we performed, the errors were much 
better than predicted by this theory. The results of some of these computations are 
presented below. 

The true solution u* of the Cauchy problem is taken to be the classical example of 
Hadamard, 

u*(x, y) = Sinh(mvy) Sin(m7Tx)/(m2,g2), 

for m = 1, 2, and 3. This solution becomes progressively more poorly behaved as m 
increases. The data g, and g2 is obtained from u* by adding a suitable random 
error to each discrete data value. This is arranged so that the functions g1 and g2 are 
in error by an amount at most e (i.e., in Problem (1), e1 = E2 = E). The constant M 
can be found analytically. Theorem (3) suggests that if we are to have any accuracy 
at points intermediate to 20 and EN, E and h must be chosen small (for example, 
the error at y = 1/2 is essentially governed by (E + h )1/2). In all the results 
reported, we have taken E = 0.01 and h = 0.02. The corollary to Theorem (3) 
suggests that we take w of the form 

(20) w = (2e + Ch)/(M + Ch2). 

Since the choice of C is still open, we have attempted to test the sensitivity of the 
approximate solution to the choice of X by performing computations for the values 
of C = .5, 1. and 2. Tables 1-3 (m = 1, 2, 3) give values of the relative error, defined 
by IU* - uhloj,/IuIoz,1 at y = nh, for n = 10,20, ...,50, and each of the values 
of X determined by the choice of C given above. As expected, the relative error in 
our approximations gets worse as m increases. 
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TABLE 1. (M = 1) 

Relative Error at y 

w = 0.0363 w = 0.0483 w = 0.0725 
Y (C = .5) (C= 1.) (C= 2.0) 

0.2 0.0481 0.0782 0.171 

0.4 0.0400 0.0623 0.128 

0.6 0.0412 0.0597 0.121 

0.8 0.0497 0.0606 0.120 

1.0 0.0725 0.0672 0.120 

TABLE 2. (m = 2) 

Relative Error at y 

w - 0.00628 w = 0.00837 w - 0.0125 

(=.5) (=1.) (C = 2.0) 

0.2 0.130 0.213 0.377 

0.4 0.120 0.200 0.350 

0.6 0.120 0.200 0.349 

0.8 0.122 0.199 0.350 

1.0 0.125 0.210 0.351 

TABLE 3. (m = 3) 

Relative Error at y 

w = 0.000608 w 0.000811 w = 00122 

(C= .5) (C= 1.) (C= 2.0) 

0.2 0.237 0.342 0.543 

0.4 0.234 0.337 0.533 

0.6 0.238 0.340 0.535 

0.8 0.242 0.344 0.537 

1.0 0.247 0.347 0.540 
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